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Succinct expressions for the matrix elements of various vibrational operators have been
derived in the basis of the nondegenerate harmonic oscillator. Among these are the matrix
elements of qkeλq, qk sinl(µq), qk cosl(µq), qk sinhl(µq) and qk coshl(µq), which are found
to be dependent upon two quantities and their derivatives. Furthermore, the derivative
property of the commutator is used to obtain an explicit expression for the derivatives of
an operator in terms of its nested commutator with the conjugate momentum. It may be
applied to any of the above cases to obtain the matrix representatives of expressions such
as the mixed products sinl(µq) cosl−m(µq), for example. In addition, a simple expression
for 1/q is given and its derivatives may be evaluated by this commutator technique. Also

the matrix elements of a Gaussian-type operator qkeλq
2

has been evaluated.

1. Introduction

In his treatment of the harmonic oscillator problem, Dirac [3] employed the
factorization method (cf. [5] for a general exposition of this topic) to the well-known
creation and annihilation operators,

a† = (q − ip)/
√

2, a = (q + ip)/
√

2, (1)

respectively. Here q represents the dimensionless displacement coordinate of the os-
cillator and p its conjugate momentum. These ladder operators have a simple stepping
action on an eigenket |v〉 of the harmonic oscillator, namely,

(a†)n|v〉 =

[
(v + n)!
v!

]1/2

|v + n〉, an|v〉 =

[
v!

(v − n)!

]1/2

|v − n〉. (2)
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The set {a, a†, I}, in which I denotes the identity operator, is a basis for a Lie
algebra whose binary product is commutation. With equations (2) it may be shown
that the sole nonvanishing commutator of the set is the fundamental Lie product,

[a, a†] = I. (3)

This particular algebra is called a Heisenberg Lie algebra and is denoted by LAH.
By using equation (3) it is possible to demonstrate [6] that the operators,

J+ = − 1
2a
†a†, J0 = 1

4 (aa† + a†a), J− = 1
2aa, (4)

comprise the basis of a Lie algebra of the special unitary group in two dimensions,
LASU(2), having the usual behavior under commutation,

[J0,J±] = ±J±, [J+,J−] = 2J0. (5)

Furthermore, is was shown that the superoperators,

Jα = [Jα, ], α = +, 0,−, (6)

lead directly to irreducible tensors. The components of an irreducible tensor of rank l
was shown to be expressible in the three equivalent forms,

Tlm =

(
2l

l ±m

)−1/2{
(a†)l+mal−m

}
, (7a)

Tlm =

(
2l

l ±m

)1/2 l−|m|∑
α=0

α!
2α

(
l +m

α

)(
l −m
α

)
(a†)l+m−αal−m−α, (7b)

Tlm =

(
2l

l ±m

)1/2 l−|m|∑
α=0

(−)α
α!
2α

(
l +m

α

)(
l −m
α

)
al−m−α(a†)l+m−α. (7c)

The braces in equation (7a) denote the symmetric sum of the product contained therein.
These harmonic oscillator tensors (HOTs) satisfy the normal relations for the compo-
nents of an irreducible tensor, viz.,

J±Tlm =
√

(l ∓m)(l ±m+ 1)Tl,m±1, J0Tlm = mTlm. (8)

Their construction stems from the realization that the creation and annihilation op-
erators are the maximal and minimal components, respectively, of a tensor of rank
1/2. Their practical utility lies in the fact that, as irreducible tensors, they are linearly
independent by definition and therefore they eliminate the host of linear independences
among the monomials of products of creation and annihilation operators.

By analyzing the symmetry properties of the harmonic oscillator, it was seen that
the matrix elements of the HOT components reduce to an analog of the Wigner–Eckart
theorem [7]. As in the Wigner–Eckart case, the final expression displays a conservation
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of angular momentum along the axis of quantization. The use of these ideas adopted
from the elementary theory of angular momentum led to the determination of general
expressions for the matrix elements of several vibrational operators in terms of the
Clebsch–Gordan coefficients or Wigner 3j-symbols [7]. However, it turns out that
there exist even simpler analytical expressions for these matrix elements. This article
is devoted to their derivation and disclosure.

2. Forms containing q and p

Reid and Brändas [11] derived an expression for the matrix elements of positive
integer powers of the dimensionless displacement coordinate q by using the generator of
the Hermite polynomials. An angular momentum expression for these matrix elements
has also been obtained [7]. Here we shall make use of angular momentum techniques
to arrive at simple expressions.

The inverse transformation of equations (1) leads to

q2L =

(
1
2

)L
(a† + a)2L =

(
1
2

)L L∑
M=−L

{
(a†)L+MaL−M

}
=

(
1
2

)L L∑
M=−L

(
2L

L±M

)1/2

TLM , L = 0, 1/2, 1, . . . , (9)

and the last equality follows from equation (7a). Successive application of the lowering
operator J− to the principal component of a HOT of rank L gives

TLM =

[
(L+M )!

(2L)!(L −M )!

]1/2

J L−M− TLL

=

[
(L+M )!

(2L)!(L −M )!

]1/2 L−M∑
n=0

(−)n
(
L−M
n

)
JL−M−n− TLLJ

n
−, (10)

where the second equality results from the expansion of the commutator. Substitution
of this result into equation (9) yields

q2L =

(
1
2

)L L∑
M=−L

1
(L−M )!

L−M∑
n=0

(−)n
(
L−M
n

)
JL−M−n− TLLJ

n
−. (11)

Hence, the matrix element between two vibrational states, 2j′ and 2j, where j′, j =
0, 1/2, 1, 3/2, . . ., is

〈
2j′
∣∣q2L

∣∣2j〉=

(
1
2

)L L∑
M=−L

(−)L−M

(L−M )!

L−M∑
n=0

(
L−M
n

)
×
〈
JL−M−n+ (2j′)

∣∣TLLJn−∣∣2j〉, (12)
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after invoking the turnover rule while taking into account the fact that J+ and J−
are an antiadjoint pair [cf. equations (4)]. On the other hand, the definitions (4) and
equations (2) show that

Jn+|2j′〉 =

(
− 1

2

)n[ (2j′ + 2n)!
(2j′)!

]1/2

|2j′ + 2n〉 (13a)

and

Jn−|2j〉 =

(
1
2

)n[ (2j)!
(2j − 2n)!

]1/2

|2j − 2n〉. (13b)

Thus, equation (12) becomes

〈
2j′
∣∣q2L

∣∣2j〉=

(
1
2

)L L∑
M=−L

(
1
2

)L−M 1
(L−M )!

L−M∑
n=0

(−)n
(
L−M
n

)

×
[

(2j′ + 2L− 2M − 2n)!
(2j′)!

(2j)!
(2j − 2n)!

]1/2

×
〈
2j′ + 2L− 2M − 2n

∣∣TLL∣∣2j − 2n
〉
. (14)

By equations (7a) and (2)

TLL|2j − 2n〉 =

[
(2j + 2L− 2n)!

(2j − 2n)!

]1/2

|2j + 2L− 2n〉, (15)

so that the orthonormality of the harmonic oscillator states imposes the constraint
j′ = j +M or M = j′ − j 6 L and yields the final expression,

〈
2j′
∣∣q2L

∣∣2j〉=
[
1 + (−)2L+2j+2j′](1

2

)2L+j−j′+1 (2L)!
(L+ j − j′)!

[
(2j)!
(2j′)!

]1/2

×
L+j−j′∑
n=0

(−)n
(
L+ j − j′

n

)(
2L+ 2j − 2n

2L

)
. (16)

Half the first factor has been appended to ensure that parity is conserved. Notice
that the condition j′ − j 6 L is automatically satisfied by the factorials. It is also
noteworthy that for L = 0 the series on the right side vanishes unless j = j′, but in
that case the right side is unity, in agreement with the orthonormality of the harmonic
oscillator states.

Previously [6] it has been shown that

p2L =

(
1
2

)L L∑
M=−L

(−)2L−M
(

2L
L±M

)1/2

TLM , L = 0, 1/2, 1, . . . . (17)
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Comparison with equation (9) shows that the two equations differ by the phase factor
(−)2L−M . If then follows from the constraint on M that〈

2j′
∣∣p2L

∣∣2j〉 = (−)2L+j−j′〈2j′∣∣q2L
∣∣2j〉. (18)

One may also obtain the matrix elements of mixed products of q and p. Using
equations (9) and (17) along with (10) gives rise to

q2lp2L =

(
1
2

)l+L l∑
m=−l

L∑
M=−L

(−)L−M

(l −m)!(L−M )!

×
l−m∑
n=0

L−M∑
N=0

(−)n+N

(
l −m
n

)(
L−M
N

)
J l−m−n− TllJ

L−M−N+n
− TLLJ

n
−. (19)

However, the equations (2), (4) and (7) show that

J l−m−n− TllJ
L−M−N+n
− TLLJ

n
−|2j〉

=

(
1
2

)l−m+L−M
(2l)!(2L)!

(
2j − 2N + 2L

2L

)(
2j + 2M − 2n+ 2l

2l

)
×
[

(2j)!
(2j + 2M + 2m)!

]1/2

|2j + 2M + 2m〉. (20)

Thus, the matrix elements of the mixed products are given by〈
2j′
∣∣q2lp2L

∣∣2j〉=
1
2

[
1 + (−)2j′+2l+2L+2j](1

2

)2l+2L+j−j′

× (2l)!(2L)!

[
(2j)!
(2j′)!

]1/2 l∑
m=−l

(−)L+m+j−j′

(l −m)!(L+m+ j − j′)!

×
l−m∑
n=0

(−)n
(
l −m
n

)(
2j′ − 2m− 2n+ 2l

2l

)

×
L+m+j−j′∑

N=0

(−)N
(
L+m+ j − j′

N

)(
2j − 2N + 2L

2L

)
, (21)

where the summation over M has been constrained by the orthonormality of the
vibrational states, i.e., j′ = j + M + m. We have chosen the standard form of a
monomial in which all q’s precede all p’s because all monomials of degree 2l + 2L
may be reduced to this standard form by the basic commutation relation

[q, p] = iI. (22)

Notice that a parity factor has been appended to this result in order to avoid the
computation unless the parity constraint holds. It is also readily shown that for L = 0,
equation (21) reduces to equation (16).
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The main advantage of these simple formulae is that they obviate the necessity
of evaluating Clebsch–Gordan coefficients.

3. Exponential forms

The matrix elements of the exponential function of q has been determined by Duch
[4] and later by one of us (P.P. ) in terms of the Clebsch–Gordan coefficients [7].
The formula of the latter work is unwieldy because of four nested summations. Here
we will see how these matrix elements may be expressed in terms of one summation.
By equation (1) the exponential may be expressed as

eλq = eλ(a†+a)/
√

2 = eλ
2/4eλa

†/
√

2 eλa/
√

2, (23)

where the second equality is a result of the Baker–Campbell–Hausdorff identity [10],

eX+Y = e−[X,Y ]/2eXeY , if
[
X, [X,Y ]

]
= 0 =

[
Y , [X,Y ]

]
. (24)

Thus, the matrix elements of the exponential operator are given by〈
2j′
∣∣eλq∣∣2j〉 = eλ

2/4〈2j′∣∣eλa†/√2eλa/
√

2
∣∣2j〉

= eλ
2/4〈eλ∗a/√2(2j′)

∣∣eλa/√2(2j)
〉

= eλ
2/4

∞∑
n=0

∞∑
n′=0

1
n!n′!

(
λ√
2

)n+n′〈
an(2j′)

∣∣an′(2j)〉
= eλ

2/4
∞∑
n=0

∞∑
n′=0

1
n!n′!

(
λ√
2

)n+n′[ (2j′)!
(2j′ − n)!

(2j)!
(2j − n′)!

]1/2

×
〈
2j′ − n | 2j − n′

〉
= eλ

2/4
√

(2j′)!(2j)!
∞∑
n=0

1
n!(n+ 2j − 2j′)!(2j′ − n)!

(
λ√
2

)2n+2j−2j′

. (25)

Here we have used the turnover rule and expanded the exponentials. The orthonor-
mality of the vibrational states requires that n′ = n + 2j − 2j′. In this way, the two
summations are reduced to one. The remaining summation cannot be infinite because
of the factorials. Together they require that 2j′ − 2j 6 n 6 2j′. Hence, the final
expression is〈

2j′
∣∣eλq∣∣2j〉=

√
(2j′)!(2j)!

× eλ
2/4

2j′∑
n

1
n!(n+ 2j − 2j′)!(2j′ − n)!

(
λ√
2

)2n+2j−2j′

. (26)

For 2j′ 6 2j the lower limit of the summation is 0, while for 2j < 2j′ it is 2j′ − 2j.
Notice that if λ is real, the matrix is real and symmetric, in which case it suffices to
evaluate only the upper triangular portion of the matrix and the diagonal elements.
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This equation may be used to arrive at the matrix elements of positive integer
powers or q times the exponential. Successive differentiation of the left side with
respect to λ gives rise to

dl

dλl
〈
2j′
∣∣eλq∣∣2j〉 =

〈
2j′
∣∣qleλq∣∣2j〉. (27)

The right-hand side of equation (26) may be considered as a product of functions of
λ. We write it as

f2j′;2j (λ) = F2j′;2jA(λ; 1/4)B2j′ ;2j (λ; +1), (28a)

in which

F2j′;2j ≡
√

(2j′)!(2j)!, (28b)

A(λ; a) ≡ eaλ
2
, (28c)

and

B2j′;2j(λ;±1) ≡
2j′∑
n

(±1)n

n!(n+ 2j − 2j′)!(2j′ − n)!

(
λ√
2

)2n+2j−2j′

. (28d)

The lth derivative of the product with respect to λ is

f (l)
2j′;2j(λ) = F2j′;2j

l∑
k=0

(
l

k

)
A(k)(λ; 1/4)B(l−k)

2j′ ;2j (λ; +1). (29)

The successive differentiation of A(λ; a) yields

A(k)(λ; a) = eaλ
2

[
(2aλ)k +

[k/2]∑
κ=1

(2κ− 1)!!

(
k

2κ

)
(2a)κ(2aλ)k−2κ

]
. (30)

Here [k/2] = k/2 for even values of k and [k/2] = (k − 1)/2 for odd values of
k. Since the powers of λ are always semipositive definite integers, the successive
differentiation of B2j′;2j(λ;±1) gives

B(m)
2j′;2j(λ;±1) =m!

2j′∑
n

(
1√
2

)2n+2j−2j′ (±1)n

n!(n+ 2j − 2j′)!(2j′ − n)!

×
(

2n+ 2j − 2j′

m

)
λ2n+2j−2j′−m. (31)

The nonzero terms in the summation are those for which 2n + 2j − 2j′ > m.
By equations (27) and (29) the final expression is

〈
2j′
∣∣qleλq∣∣2j〉 = F2j′;2j

l∑
k=0

(
l

k

)
A(k)(λ; 1/4)B(l−k)

2j′ ;2j (λ; +1), (32)
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where the derivatives A(k)(λ; 1/4) and B(l−k)
2j′;2j(λ;±1) are given by equations (30) and

(31), respectively. The above algorithm to generate the matrix elements of this operator
is much simpler than that given in [7] because in that case there are six nested sum-
mations, among which the three innermost require the evaluation of Clebsch–Gordan
coefficients. Notice that for l = 0 it reduces to equation (25), so that it naturally
includes that case. On the other hand, if λ = 0, all the derivatives vanish, except for
the case in which k = 0 = l. In this case the definitions of A and B2j′;2j show that
the right side becomes unity when 2j′ = 2j.

4. Forms containing sine and cosine functions

Equation (25) is also useful for obtaining the matrix elements of the sine and
cosine functions. For λ = ±iµ, where µ is a real scalar, the Euler formulae give:

〈
2j′
∣∣ sin(µq)

∣∣2j〉=
i
2

〈
2j′
∣∣e−iµq − eiµq

∣∣2j〉
=

i
2
F2j′;2je

−µ2/4
∞∑
n=0

1
n!(n+ 2j − 2j′)!(2j′ − n)!

×
[(
− i

µ√
2

)2n+2j−2j′

−
(

i
µ√
2

)2n+2j−2j′
]

=
i
2
F2j′;2je

−µ2/4
∞∑
n=0

1
n!(n+ 2j − 2j′)!(2j′ − n)!

×
(
µ2

2

)n+j−j′[
(−i)2n+2j−2j′ − (i)2n+2j−2j′]

=
i
2

[
(−i)2j−2j′ − (i)2j−2j′]F2j′;2je

−µ2/4

×
∞∑
n=0

(−)n

n!(n+ 2j − 2j′)!(2j′ − n)!

(
µ2

2

)n+j−j′

=
i2j−2j′+1

2

[
(−)2j−2j′ − 1

]
F2j′;2je

−µ2/4

×
∞∑
n=0

(−)n

n!(n+ 2j − 2j′)!(2j′ − n)!

(
µ2

2

)n+j−j′

=−1
2

[
1 + (−)2j−2j′+1](−)(2j−2j′+1)/2F2j′;2je

−µ2/4



P. Palting et al. / Harmonic oscillator tensors. III 39

×
2j′∑
n=0

(−)n

n!(n+ 2j − 2j′)!(2j′ − n)!

(
µ2

2

)n+j−j′

=−1
2

[
1 + (−)2j−2j′+1](−)(2j−2j′+1)/2F2j′;2j

×A(µ;−1/4)B2j′ ;2j(µ;−1) (33)

for 2j′ 6 2j. In the final expression we have made use of the definitions (26c) and
(28d) and taken cognizance of the fact that the matrix is real and symmetric. Notice
that the rule for the conservation of parity is an inherent property of this result.

In a similar manner it is found that for 2j′ 6 2j〈
2j′
∣∣ cos(µq)

∣∣2j〉=
1
2

〈
2j′
∣∣e−iµq + eiµq

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′](−)(2j−2j′)/2

×F2j′;2jA(µ;−1/4)B2j′ ;2j(µ;−1), (34)

〈
2j′
∣∣ sinh(µq)

∣∣2j〉=
1
2

〈
2j′
∣∣eµq − e−µq

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′+1]F2j′;2jA(µ; 1/4)B2j′ ;2j(µ; +1)

=
1
2

[
1 + (−)2j−2j′+1]〈2j′∣∣eµq∣∣2j〉, (35)

〈
2j′
∣∣ cosh(µq)

∣∣2j〉=
1
2

〈
2j′
∣∣eµq + e−µq

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′]F2j′;2jA(µ; 1/4)B2j′ ;2j(µ; +1)

=
1
2

[
1 + (−)2j−2j′]〈2j′∣∣eµq∣∣2j〉. (36)

The first factors in these equations reflect the parity restriction of these matrix elements.
Casting them in terms of A and B shows how closely they are related to each other,
a particularly simplifying feature when programming them.

The successive differentiation of equations (33) through (36) with respect to µ
gives the relations〈

2j′
∣∣q2k sin(µq)

∣∣2j〉= (−)k
d2k

dµ2k

〈
2j′
∣∣ sin(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′+1](−)(2j−2j′+1)/2(−)k+1F2j′;2j

×
2k∑
κ=0

(
2k
κ

)
A(κ)(µ;−1/4)B(2k−κ)

2j′ ;2j (µ;−1), (37a)
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〈
2j′
∣∣q2k−1 sin(µq)

∣∣2j〉= (−)k
d2k−1

dµ2k−1

〈
2j′
∣∣ cos(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′](−)(2j−2j′)/2(−)kF2j′;2j

×
2k−1∑
κ=0

(
2k − 1
κ

)
A(κ)(µ;−1/4)B(2k−κ−1)

2j′ ;2j (µ;−1), (37b)

]
〈
2j′
∣∣q2k cos(µq)

∣∣2j〉= (−)k
d2k

dµ2k

〈
2j′
∣∣ cos(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′](−)(2j−2j′)/2(−)kF2j′;2j

×
2k∑
κ=0

(
2k
κ

)
A(κ)(µ;−1/4)B(2k−κ)

2j′ ;2j (µ;−1), (38a)

〈
2j′
∣∣q2k−1 cos(µq)

∣∣2j〉= (−)k+1 d2k−1

dµ2k−1

〈
2j′
∣∣ sin(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′+1](−)(2j−2j′+1)/2(−)kF2j′;2j

×
2k−1∑
κ=0

(
2k − 1
κ

)
A(κ)(µ;−1/4)B(2k−κ−1)

2j′ ;2j (µ;−1), (38b)

〈
2j′
∣∣q2k sinh(µq)

∣∣2j〉=
d2k

dµ2k

〈
2j′
∣∣ sinh(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′+1]F2j′;2j

×
2k∑
κ=0

(
2k
κ

)
A(κ)(µ; 1/4)B(2k−κ)

2j′ ;2j (µ; +1), (39a)

〈
2j′
∣∣q2k−1 sinh(µq)

∣∣2j〉=
d2k−1

dµ2k−1

〈
2j′
∣∣ cosh(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′]F2j′;2j

×
2k−1∑
κ=0

(
2k − 1
κ

)
A(κ)(µ; 1/4)B(2k−κ−1)

2j′ ;2j (µ; +1), (39b)
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〈
2j′
∣∣q2k cosh(µq)

∣∣2j〉=
d2k

dµ2k

〈
2j′
∣∣ cosh(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′]F2j′;2j

×
2k∑
κ=0

(
2k
κ

)
A(κ)(µ; 1/4)B(2k−κ)

2j′ ;2j (µ; +1), (40a)

〈
2j′
∣∣q2k−1 cosh(µq)

∣∣2j〉=
d2k−1

dµ2k−1

〈
2j′
∣∣ sinh(µq)

∣∣2j〉
=

1
2

[
1 + (−)2j−2j′+1]F2j′;2j

×
2k−1∑
κ=0

(
2k − 1
κ

)
A(κ)(µ; 1/4)B(2k−κ−1)

2j′ ;2j (µ; +1), (40b)

in which k = 1, 2, 3, . . . . The final expressions are obtained by substituting the appro-
priate derivatives indicated by equations (33) through (36).

Since q commutes with itself, so do exponents of q. As a consequence, powers
of the Euler formulae may be expanded in a binomial series. We have

sinl(µq) =

(
i
2

)l[
e−iµq − eiµq]l

=

(
i
2

)l l∑
m=0

(−)l−m
(
l

m

)
ei(l−2m)µq

=


(−)l/2

2l

{
2
l/2−1∑
m=0

(−)m
(
l

m

)
cos(l − 2m)µq + (−)l/2

(
l

l/2

)}
,

(
− 1

4

)(l−1)/2 (l−1)/2∑
m=0

(−)m
(
l

m

)
sin(l − 2m)µq,

(41)

cosl(µq) =

(
1
2

)l[
e−iµq + eiµq]l =

(
1
2

)l l∑
m=0

(
l

m

)
ei(l−2m)µq

=


1
2l

{
2
l/2−1∑
m=0

(
l

m

)
cos(l − 2m)µq +

(
l

l/2

)}
,

1
2l−1

(l−1)/2∑
m=0

(
l

m

)
cos(l − 2m)µq,

(42)
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sinhl(µq) =

(
− 1

2

)l[
e−µq − eµq

]l
=

(
− 1

2

)l l∑
m=0

(−)l−m
(
l

m

)
e(l−2m)µq

=



(
− 1

2

)l{
2
l/2−1∑
m=0

(−)m
(
l

m

)
cosh(l − 2m)µq + (−)l/2

(
l

l/2

)}
,

(
− 1

2

)l−1 (l−1)/2∑
m=0

(−)m
(
l

m

)
sinh(l − 2m)µq,

(43)

coshl(µq) =

(
1
2

)l[
e−µq + eµq

]l
=

(
1
2

)l l∑
m=0

(
l

m

)
e(l−2m)µq

=



(
1
2

)l{
2
l/2−1∑
m=0

(
l

m

)
cosh(l − 2m)µq +

(
l

l/2

)}
,

(
1
2

)l−1 (l−1)/2∑
m=0

(
l

m

)
cosh(l − 2m)µq.

(44)

The upper of these relations are for an even positive definite value of l, while the
lower expressions are valid for an odd positive definite l.

Multiplying equations (41) through (44) by qk, we find the matrix elements〈
2j′
∣∣qk sinl(µq)

∣∣2j〉 =
1
2

[
1 + (−)2j′+k+l+2j]

×



(−)l/2

2l

{
2
l/2−1∑
m=0

(−)m
(
l

m

)〈
2j′
∣∣qk cos(l − 2m)µq

∣∣2j〉
+(−)l/2

(
l

l/2

)〈
2j′
∣∣qk∣∣2j〉},

(
− 1

4

)(l−1)/2 (l−1)/2∑
m=0

(−)m
(
l

m

)〈
2j′
∣∣qk sin(l − 2m)µq

∣∣2j〉,
(41)

〈
2j′
∣∣qk cosl(µq)

∣∣2j〉 =
1
2

[
1 + (−)2j′+k+2j]

×


1
2l

{
2
l/2−1∑
m=0

(
l

m

)〈
2j′
∣∣qk cos(l − 2m)µq

∣∣2j〉 +

(
l

l/2

)〈
2j′
∣∣qk∣∣2j〉},

1
2l−1

(l−1)/2∑
m=0

(
l

m

)〈
2j′
∣∣qk cos(l − 2m)µq

∣∣2j〉,
(42)
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〈
2j′
∣∣qk sinhl(µq)

∣∣2j〉 =
1
2

[
1 + (−)2j′+k+l+2j]

×



(
− 1

2

)l{
2
l/2−1∑
m=0

(−)m
(
l

m

)〈
2j′
∣∣qk cosh(l − 2m)µq

∣∣2j〉
+(−)l/2

(
l

l/2

)〈
2j′
∣∣qk∣∣2j〉},

(
− 1

2

)l−1 (l−1)/2∑
m=0

(−)m
(
l

m

)〈
2j′
∣∣qk sinh(l − 2m)µq

∣∣2j〉,
(43)

〈
2j′
∣∣qk coshl(µq)

∣∣2j〉 =
1
2

[
1 + (−)2j′+k+2j]

×



(
1
2

)l{
2
l/2−1∑
m=0

(
l

m

)〈
2j′
∣∣qk cosh(l − 2m)µq

∣∣2j〉
+

(
l

l/2

)〈
2j′
∣∣qk∣∣2j〉},

(
1
2

)l−1 (l−1)/2∑
m=0

(
l

m

)〈
2j′
∣∣qk cosh(l − 2m)µq

∣∣2j〉,
(44)

where we have appended the appropriate parity constraints. The integrals on the
right may be evaluated by equations (16) and (37) through (40). Thus, essentially
the functions A and B and their derivatives determine the matrix elements of both
exponential forms and these trigonometric forms.

5. The differentiation technique

For an operator O on a vector space, let us consider the commutator,[
O, f (x)

]
g(x) = O

[
f (x)g(x)

]
− f (x)

[
Og(x)

]
. (45)

If the operator possesses the derivation property,

O
[
f (x)g(x)

]
=
[
Of (x)

]
g(x) + f (x)

[
Og(x)

]
, (46)

then equation (45) may be written as[
O, f (x)

]
g(x) =

[
Of (x)

]
g(x). (47)

In particular, the commutation relation

Of (x) ≡
[
O, f (x)

]
=
[
Of (x)

]
(48)
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obtains whenever the operator O satisfies the derivation property. Repeating this
process with f (x) replaced by [Of (x)] gives

O2f (x) ≡
[
O, [O, f (x)]

]
=
[
O2f (x)

]
, (49)

so that in general,

Onf (x) =
[
Onf (x)

]
. (50)

The expansion of the nested commutators on the left leads to the expression

Onf (x) =
[
Onf (x)

]
=

n∑
m=0

(−)m
(
n

m

)
On−mf (x)Om. (51)

In the domain of angular momentum theory Aebersold and Biedenharn [2] pointed
out the necessity that the angular momentum operators possess the derivation property
in order for wave functions to be considered as irreducible tensors. Indeed, we have
previously used the expansion in equation (51) in this context in order to arrive at
equation (10), for example.

In this section we shall look specifically at the derivative itself. Since it is related
to the momentum conjugate to q, we may write equation (51) as

inpnf (q) = f (n)(q) = in
n∑

m=0

(−)m
(
n

m

)
pn−mf (q)pm. (52)

This equation is quite useful because it allows the evaluation of the matrix elements
of the derivatives of the functions of q, viz.,

〈
2j′
∣∣f (n)(q)

∣∣2j〉 = in
n∑

m=0

(−)m
(
n

m

)〈
2j′
∣∣pn−mf (q)pm

∣∣2j〉. (53)

To evaluate this relation we first make use of equation (17) to express the integral
in the binomial expansion in terms of the HOTs, i.e.,〈

2j′
∣∣f (n)(q)

∣∣2j〉
=

(
− i√

2

)n n∑
m=0

(−)m
(
n

m

) (n−m)/2∑
µ′=−(n−m)/2

(−)−µ
′
(

n−m
(n−m)/2± µ′

)1/2

×
m/2∑

µ=−m/2

(−)−µ
(

m

m/2± µ

)1/2〈
2j′
∣∣T(n−m)/2,µ′f (q)Tm/2,µ

∣∣2j〉. (54)

We then employ equation (10) to relate these HOT components in terms of the principal
components and subsequently apply the turnover rule to give
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〈
2j′
∣∣f (n)(q)

∣∣2j〉
=

(
− i√

2

)n n∑
m=0

(−)m
(
n

m

) (n−m)/2∑
µ′=−(n−m)/2

(−)(n−m)/2−2µ′

[(n−m)/2− 2µ]!

m/2∑
µ=−m/2

(−)−µ

(m/2− µ)!

×
(n−m)/2−µ′∑

ν′=0

(−)ν
′
(

(n−m)/2 − µ′
ν ′

)m/2−µ∑
ν=0

(−)ν
(
m/2− µ

ν

)
×
〈
Jν
′

+ a
n−mJ (n−m)/2−µ′−ν′

+ (2j′)
∣∣f (q)

∣∣Jm/2−µ−ν
− (a†)mJν−(2j)

〉
, (55)

where we have inserted maximal and minimal components of the HOTs as creation
and annihilation operators, respectively. We next use equations (4) to likewise express
J+ and J− in terms of creation and annihilation operators and subsequently apply
equations (2) to obtain〈

2j′
∣∣f (n)(q)

∣∣2j〉
=

(
− i

2

)n n∑
m=0

(−)m
(
n

m

) (n−m)/2∑
µ′=−(n−m)/2

(−1/2)−µ
′

[(n−m)/2− 2µ]!

[
(2j′ − 2µ′)!

(2j′)!

]1/2

×
m/2∑

µ=−m/2

(−1/2)−µ

(m/2 − µ)!

[
(2j)!

(2j + 2µ)!

]1/2〈
2j′ − 2µ′

∣∣f (q)
∣∣2j + 2µ

〉
×

(n−m)/2−µ′∑
ν′=0

(−)ν
′
(

(n−m)/2 − µ′
ν ′

)
(2j′ + n−m− 2µ′ − 2ν ′)!

(2j′ − 2µ′ − 2ν ′)!

×
m/2−µ∑
ν=0

(−)ν
(
m/2− µ

ν

)
(2j − 2ν +m)!

(2j − 2ν)!
. (56)

Finally, we make the substitutions, µ′ = I ′ − (n−m)/2 and µ = I −m/2 to obtain〈
2j′
∣∣f (n)(q)

∣∣2j〉
=

(
1

2
√

2

)n n∑
m=0

(−)m
(
n

m

) n−m∑
I′=0

(−1/2)I
′

(n−m− I ′)!

[
(2j′ − 2I ′ + n−m)!

(2j′)!

]1/2

×
m∑
I=0

(−1/2)I

(m− I)!

[
(2j)!

(2j + 2I −m)!

]1/2〈
2j′ − 2I ′ + n−m

∣∣f (q)
∣∣2j + 2I −m

〉
×
n−m−I′∑
ν′=0

(−)ν
′
(
n−m− I ′

ν ′

)
(2j′ + 2n− 2m− 2I ′ − 2ν ′)!
(2j′ − 2I ′ + n−m− 2ν ′)!

×
m−I∑
ν=0

(−)ν
(
m− I
ν

)
(2j − 2ν +m)!

(2j − 2ν)!
. (57)
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Previously, equation (53) has been used to determine a general expression for the
matrix elements of integral powers of 1/q [8]. There the starting integral is that for
the operator 1/q, viz.,〈

v′
∣∣q−1

∣∣v〉=Nv′Nv

∫ +∞

−∞
Hv′(q)Hv(q)q−1e−q

2
dq

=
1
2

[
1 + (−)v

′+v−1]Nv′Nv

∫ +∞

−∞
Hv′(q)Hv(q)q−1e−q

2
dq

=
1
2

[
1 + (−)v

′+v−1]Nv′Nv

v′∑
m′=0

v∑
m=0

1
2

[
1 + (−)v

′+v−m′−m−1]
×hv′m′hvm

∫ +∞

−∞
qv
′+v−m′−m−1e−q

2
dq, (58)

where we have used the definitions

|v〉 = NvHv(q)e−q
2/2, (59)

in which the normalization constant is

Nv =
[
2v v!

√
π
]−1/2

, (60)

and the Hv(q) are the Hermite polynomials,

Hv(q) =
v∑

m=0

hvmq
v−m, (61)

whose scalar coefficients may be determined by analyzing their tabulations (cf. ta-
ble 22.1.2 of reference [1] or equations (11)–(23) of reference [9], for example). We
find that

hv0 = 2v, (62a)

hvm = Re
(
im
)
2v−m/2(m− 1)!!

(
v

m

)
, m > 0, (62b)

where Re(im) denotes the real part of the argument im. These latter two equations show
that m must be an even semipositive definite integer since the Hermite polynomials
are real. Integration over the symmetric interval leads to the final expression,

〈
v′
∣∣q−1

∣∣v〉 =
1
2

[
1 + (−)v

′+v−1]√ 2
v′!v!

(63a)

×
2[v′/2]∑
m′=0

2[v/2]∑
m=0


0, (v′ + v −m′ −m− 1) odd,

gv′m′gvm, (v′ + v −m′ −m− 1) = 0,

(v′ + v −m′ −m− 2)!!gv′m′gvm, (v′ + v −m′ −m− 1) even,
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where the summations over m′ and m are restricted to even integers. The g coefficients
are defined as

gv0 = 1, (63b)

gvm = (−)m/2(m− 1)!!

(
v

m

)
, m even. (63c)

Apart from being a relation that contains a rather large number of summations,
the expression for the general derivative of a function (equation (57)) also has some
subtle conditions embedded in its structure. Taken together, these features lead us to
believe that the practical implementation of taking the derivative of a function to some
arbitrary order is perhaps more efficiently carried out by stepwise differentiation. To
illustrate the potential pitfalls, we consider the case of a simple first-order derivative.

For n = 1, equation (52) leads to〈
v
∣∣f (1)(q)

∣∣v′〉= i
〈
v
∣∣[p, f (q)

]∣∣v′〉
=

1√
2

[√
v + 1

〈
v + 1

∣∣f (q)
∣∣v′〉−√v〈v − 1

∣∣f (q)
∣∣v′〉

+
√
v′ + 1

〈
v
∣∣f (q)

∣∣v′ + 1
〉
−
√
v′
〈∣∣f (q)

∣∣v′ − 1
〉]

, (64)

where the final result is obtained by using the inverse of equation (1) to determine p
in terms of a† and a, the turnover rule and equations (2). In a practical application of
this formula, the matrix elements of the operator f (q) have been previously prepared
for the basis, say, v = 0, 1, . . . , vmax. Thus, the matrix representative of f (q) is a
matrix of dimension vmax × vmax. However, the creation operator a† in equation (64)
will limit the dimension of 〈v|f (1)(q)|v′〉 to a basis of size vmax − 1, because the ket
|vmax + 1〉 does not exist in the previously prepared basis for f (q). In order to ensure
consistencies in precision, one should border the matrix of the derivative by setting
the last row and column equal to zero.

Obviously, this caveat should be taken into account each time a derivative is
taken, i.e., to evaluate a derivative of nth order this bordering process must be carried
out in a sequential manner, thereby rendering a final matrix of f (n)(q) whose last n
rows and columns have been set to zero. The remaining (vmax−n)× (vmax−n) matrix
is then a precise expression of the matrix representative of f (n)(q).

6. Gaussian forms

The potential containing a Gaussian multiplied by a monomial may be evaluated
in a direct manner. Consider the integral with a semipositive definite integer k,〈

v′
∣∣qke−λq

2∣∣v〉 = Nv′Nv

∫ +∞

−∞
Hv′(q)Hv(q)qke−(λ+1)q2

dq, (65)
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for which we have the parity restriction,〈
v′
∣∣qke−λq

2∣∣v〉=
[
1 + (−)v

′+v+k]Nv′Nv

×
∫ ∞

0
Hv′(q)Hv(q)qke−(λ+1)q2

dq

=
[
1 + (−)v

′+v+k] 1√
π

1

2(v′+v)/2

√
1

v′!v!

2[v′/2]∑
m′=0

2[v/2]∑
m=0

gv′m′gvm

×2v
′+v−(m′+m)/2

∫ ∞
0

qv
′+v−m′−m+ke−(λ+1)q2

dq,

〈
v′
∣∣qke−λq

2∣∣v〉=
1
2

[
1 + (−)v

′+v+k]√ 1
2kv′!v!

×
2[v′/2]∑
m′=0

2[v/2]∑
m=0


0,

gv′m′gvm/
√
λ+ 1,

gv′m′gvm
(v′+v−m′−m+k−1)!!

(λ+1)(v′+v−m′−m+k+1)/2 .

(66)

From top to bottom the equalities of equation (66) are for odd, zero and even values of
v′+v−m′−m+k, respectively. Also the summations over m′ and m are carried out
in steps of two. To arrive at the final result, use has been made of equations (60)–(63).

7. Summary

There is an increasing literature concerning the evaluation of matrix elements of
vibrational operators, stimulated by ongoing studies of the many potentials proffered to
better understand the nuclear motion in molecules, be they flexible, non-rigid or floppy
in character. Here we have shown that various techniques may be used to facilitate
the determination of generalized forms of many such operators. A computer program
has been written to evaluate the matrix representatives of all the operators considered
in this work and will be published elsewhere.
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